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are composed of a disordered or random collection of
homogeneous layers. As an example, consider the modelA variety of problems involving disordered systems can be formu-

lated mathematically in terms of products of random transfer matri- shown in Fig. 1. Here we have chosen a pseudo-random
ces, including Ising spin systems, optical and continuum mechanical sequence (to be described later) of layer thicknesses and
wave propagation, and lattice dynamical systems. The growth or material property (elastic stiffnesses, dielectric constant,
decay of solutions to these problems is governed by the Lyapunov

etc). We can scale these to reflect typical values for differ-spectrum of the product of these matrices. For continuum mechani-
ent applications. Figure 2 shows a 2D acoustic finite-differ-cal or optical wave propagation, the transfer matrices arise from

the application of boundary conditions at the discontinuities of the ence wave propagation simulation for such a model; at a
medium. Similar matrices arise in lattice-based systems when the given depth, the plot shows the energy recorded at that
equations of motion are solved recursively. For the disordered lat- depth as a function of time. The first energy seen at any
tice mechanical system, on which we focus in this paper, the scatter-

given depth is the primary down-going pulse. Coherenting effects of the heterogeneities on a propagating pulse can be
events sloping downward to the right (such as the primarycharacterized by the frequency-dependent localization length—

effectively the ‘‘skin depth’’ for multiple-scattering attenuation. Thus arrival) correspond to down-going waves, while events
there is a close connection in these transfer matrix-based systems sloping downward to the left correspond to up-going
between localization and the Lyapunov spectrum. For the one-di- waves. In a simulation such as this it is possible to follow
mensional lattice, the matrices are 2 3 2 and, assuming certain

the envelope of the pulse as it propagates into the medium.models of disorder, both Lyapunov exponents are nonzero and
Figure 3 shows a log–linear plot of the amplitude of thissum to zero. Thus all propagating solutions are either exponentially

growing or decaying. For higher dimensions the situation is more pulse. Since the medium is nonattenuative, the decay
complicated since there is then a spectrum of exponents, making shown in this figure is due to multiple scattering and geo-
the calculations more difficult, and it is less clear just how to relate metrical spreading. Disordered layered systems such as
the Lyapunov exponents to a single localization length. Further,

this are common in a number of fields, including opticsunlike for the Schrödinger equation, the transfer matrices associated
[GKST94], seismology [WSN90], quantum mechanicswith the lattice mechanical system are not symplectic. We describe

a robust numerical procedure for estimating the Lyapunov spectrum [KKT83], Ising spin systems [Fuc90], and others.
of products of random matrices and show application of the method There is a close connection between multiple-scattering
to the propagation of waves on a lattice. In addition, we show how attenuation and Anderson localization [And58]. The
to estimate the uncertainties of these exponents. Q 1997 Academic Press

Schrödinger equation for a lattice with random potential
is closely related to the frequency-domain equations of
motion for an elastic lattice with randomly varying springBACKGROUND: WAVE PROPAGATION IN
constants and masses. It was shown by Ishii [Ish73] thatDISORDERED MEDIA AND LOCALIZATION
in 1D any degree of uncorrelated random disorder is suffi-
cient to cause exponential localization of the eigenfunc-Broadly speaking, the effects of multiple scattering on
tions of the quantum mechanical or elastic disordered sys-a wave propagating in a disordered medium are:
tem. (An eigenfunction cn is exponentially localized if it

• The path length is increased. decays exponentially at large distances from its maximum,
• The pulse is dispersed. ucnu , uc0u exp(2aunu), where a is a positive constant and
• The pulse is attenuated as energy is shifted from the the maximum of c has been taken to be at n 5 0.) As we

direct arrival into the multiple-scattering coda. will describe in more detail below, for independent random
disorder this exponential localization follows from a theo-These ideas are well understood and can be explained

via perturbation theory for weakly disordered media. (For rem of Furstenberg [Fur63] once the underlying equations
have been rewritten in terms of transfer matrices.an overview of the mathematical results see [AKP191].)

In this paper we will restrict our attention to systems which For wave propagation the localization length can be
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28 SCALES AND VAN VLECK

effective velocity, and the angle brackets denote averaging.
(The zero-frequency effective velocity, the so-called
Backus velocity, is v0 5 kv22

i l21/2 [Bac62].)
A dispersion formula such as this tells us how to relate

observations made at one length scale with those made at
another. Sheng et al. [SZWP86a, SZWP86b] argue that for
acoustic wave propagation, l( f ) has the form c1 1 c2/f 2,
in which case it is easy to show that the phase velocity
dispersion formula is

v( f ) 5 vy S1 2
vy

2f

Ïc2/c1

c1 f 2 1 c2
D. (4)

Rather than assuming a particular functional form for
FIG. 1. A model of a randomly laminated medium obtained by choos- l( f ) we seek a direct method of calculating it. Returning

ing pseudo-random sequences of material property and layer thicknesses. to the finite-difference simulation shown above, it would
These values can then be scaled to reflect typical material properties for

appear that in principle one could perform a spectral analy-a given application.

thought of as the skin depth associated with multiple-scat-
tering attenuation. Consider a vertically incident plane
wave in a layered medium. If the envelope of a plane wave
decays exponentially with distance e2z/l( f ), where f is the
frequency, then l( f ) is the frequency-dependent localiza-
tion length. Thus

l21 5 lim
LRy

S2
1
L

ln uT uD, (1)

where T is the transmission coefficient and L is the propa-
gation distance. An approximation to the localization
length for finite L is

l( f ) P
2L

ln uT u
. (2)

The frequency-dependent localization length would be
an extremely useful quantity to have in many applications
involving wave propagation in highly heterogeneous media
since it provides the means to scale the effects of complex
microstructures. For example, given the exponential nature
of the decay, it is natural to think of the multiple scattering
as a relaxation mechanism. Hence there is a Q (quality
factor) equal to ffl/v( f ), where v is the phase velocity
[Fut62]. Then from Kramers–Krönig, the velocity disper-

FIG. 2. We take the model shown in Fig. 1 and scale the springsion is
constants and layer thicknesses to reflect values typical of the earth’s
near surface. Here is shown a 2D acoustic finite-difference simulation of
a pulse propagating into such a medium. The pulse is generated by1

v( f )
2

1
v(y)

5 H S 1
2fflD, (3) applying a band-limited point source (with a central frequency of 60 Hz)

just below the upper surface. This figure shows the acoustic response at
each layer as a function of time. The first event seen at each depth is

where H is the Hilbert transform, vi are the layer velocities, the direct wave, with all the other events being up-going or down-going
multiply scattered energy.v(y) ; vy 5 kv21

i l21 is the infinite frequency (ray theoretic)
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be visualized via the normal modes of the system. The
localization length arises naturally as the reciprocal of one
of the Lyapunov exponents of the product of transfer ma-
trices for the lattice. There is a close connection between
wave propagation on a lattice and wave propagation in a
continuum, a connection that is discussed in detail in the
book by Askar [Ask85].

EQUATIONS OF MOTION

Let us begin with the simplest case, waves propagating
in a heterogeneous 1D lattice. Later, we will show how to
generalize these results to higher dimensional systems.

There are N point masses ml connected by N 2 1
Hooke’s law springs of stiffness kl . The end masses are
fixed, as shown in Fig. 4, and the longitudinal displacement

FIG. 3. Log–linear plot of the amplitude of the envelope of the down- of the lth mass xl is measured relative to its equilibrium po-
going pulse as a function of depth. Since the medium is perfectly elastic, sition.
this decay is due to multiple scattering and geometrical spreading. The kinetic energy of the system is AsoN

l50 mlẋ2
l and the

potential energy (assuming only nearest-neighbor interac-
tions) is AsoN

l50 kl11 (xl11 2 xl)2. Thus the lattice equations
of motion aresis of the observed decay of the pulse and from this estimate

the frequency-dependent localization length. However,
mlẍl 2 kl11(xl11 2 xl) 2 kl(xl21 2 xl) 5 0. (5)our goal is to develop robust numerical procedures for

characterizing this multiple-scattering attenuation directly
Assuming a sinusoidal time dependence, the equationfrom in situ measurements of the material properties of the

for the spatial part of the motion issystem, which we regard as a realization of some underlying
stochastic process. We will achieve this by casting the wave

2mlg2zl 5 kl11zl11 2 (kl11 1 kl)zl 1 klzl21 , (6)propagation problem in terms of the products of random
matrices. This is possible for 1D systems or quasi-1D sys-

where xl ; zleigt, ortems such as the laminated medium described above, in
which the wave propagation reduces to the application of

(T 1 g2M)z 5 0, (7)
transfer matrices. We will show later that the decay of
energy in these quasi-1D systems, which we characterize where M is the mass matrix M 5 diag(ml) and T is the
in terms of the localization length, can be computed from tridiagonal matrix of spring constants: T(l, l) 5 2(kl11 1
the Lyapunov exponents (LEs) of the product of random kl), T(l, l 1 1) 5 kl11 , and T(l 1 1, l) 5 kl .transfer matrices. Further, we will describe a numerical
algorithm based on the repeated application of the QR Free Oscillations of the 1D Lattice
factorization for computing LEs, which allows us to com-

For the ordered monoatomic 1D lattice ml 5 m, kl 5 kpute just the positive LEs along with error estimates.
for all l, so the equation for the free oscillations reduces to

LATTICE DYNAMICAL SYSTEMS
(T 1 g2I)z 5 0. (8)

The techniques we will present for the calculation of
Since the spring constants are all equal to k, T reduces toLyapunov spectra can be applied to any problem that can
k timesbe described in terms of the products of random matrices.

Many examples of such problems are described in the
books by Crisanti et al. [CPV93] and Mehta [Meh91]. Here,
to illustrate the computational methods and to make the
connection between the Lyapunov exponents and localiza- 3

22 1 0 0 ...

1 22 1 0 ...

0 1 22 1 ...

... ...

0 ... 0 1 22

4. (9)tion, we will focus attention on the lattice mechanical sys-
tem. In this setting localization can be seen to arise from the
tendency of lattice heterogeneities to convert propagating
energy into localized fluctuations, which can themselves
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FIG. 4. A simple mechanical system exhibiting localization of energy. Masses mi are connected via springs of stiffness ki . The end masses are
fixed. Longitudinal displacement of the ith mass xi is measured relative to its equilibrium position.

The eigenvalues of this matrix are SzN21

zN
D5S 0 1

21 2a
DNS0

1
D. (16)

g2
l 5 22 1 2 cos Slf

ND (10)
Obviously this equation cannot produce an eigenvector
for arbitrary values of a. For example, if we are trying to

while the eigenvectors are compute normal modes whose displacement vanishes at
both ends of the lattice, then only using a associated with

zl 5 hsin(lf/N), sin(2lf/N), ..., sin((N 2 1)lf/N)j. (11) an eigenvalue will result in zN being zero.

Another way of looking at the free oscillations of the LOCALIZED STATES ON LATTICES
lattice is to recast the eigenvalue problem in Eq. (6) as a

For the homogeneous lattice all the eigenmodes are non-recursion relation,
zero everywhere except at the nodal points. In that sense
they have global extent. Suppose we disturb the regularity
of the lattice by perturbing either a spring constant or azl11 5 S2 2

mg2

k D zl 2 zl21 , (12)
mass. Rayleigh’s principle [Ray45, Vol. I, Sect. 88] says
that if a single mass is reduced (or a spring constant in-

which can be rewritten as a one-step mapping creased) then all the frequencies are unchanged or in-
creased, but not by more than the distance to the nearest
unperturbed frequency. Similarly, if a single mass is in-
creased (or a spring constant decreased) then all the fre-S zl

zl11
D5 1 0 1

21 2 2
mg2

k 2 Szl21

zl
D. (13) quencies are unchanged or decreased, but not by more

than the distance to the nearest unperturbed frequency.
In spite of this apparent symmetry between the effects of

increasing versus decreasing masses (or decreasing versus
Defining the matrix increasing spring constants), there is a profound difference

in practice. Because the low-frequency limit is zero (at
least for the monoatomic chain), decreasing a spring con-

B 5S 0 1

21 2a
D, (14) stant, and hence one or more frequencies, cannot result

in new frequencies outside the band of frequencies allowed
by the dispersion relation for the homogeneous lattice. On

where a 5 1 2 (m/2k)g2, it follows by induction that the other hand, increasing a spring constant can result in
perturbing an eigenfrequency beyond the maximum al-
lowed by the homogeneous dispersion relation (2Ïk/m
for the monoatomic chain). If this happens, the resultingS zl

zl11
D5 BlSz0

z1
D, (15)

eigenmode must be exponentially damped. One way to
see that this is so is to observe that for complex wave
numbers the sine in the dispersion relation becomes a sinh,where Bl is the lth power of the matrix B.

The eigenvalues of B are l1,2 5 a 6 Ïa2 2 1. If uau . 1 which can match any frequency whatsoever. The result
also follows from the discussion following Eq. (15).(g2 . 4k/m), then the zl solutions are exponentially grow-

ing or decaying and cannot satisfy the zero-displacement This effect is illustrated in Fig. 5 which shows the two
highest frequency eigenmodes for systems of point massesboundary conditions. If uau , 1 (g2 , 4k/m), then the

solutions are oscillatory and can be made to satisfy the connected by 50 springs (spring constant equal to one)
with, respectively, one and two perturbed spring constants.boundary conditions. Taking z0 5 0, then
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FIG. 5. As an example, consider a lattice of 50 unit masses connected by springs with unit spring constant. Perturb a single site by increasing
its spring constant (or decreasing its mass). Rayleigh’s principle says that this will result in increasing (or leaving unchanged) the frequencies.
Increasing a single spring constant sufficiently results in a single eigenvalue being pushed out of the band of frequencies allowed by the homogeneous
dispersion relation. This must therefore be associated with a localized mode. Perturbing two lattice sites in this case pushes two frequencies outside
the allowed band, resulting in two localized modes.

In the first case, a single frequency is pushed into the the dispersion curve is multivalued, so we should expect
to see localized modes associated with decreasing a springforbidden band beyond 2Ïk/m, resulting in a single local-

ized eigenmode. Increasing two spring constants suffi- constant since the higher frequency branches of the disper-
sion curve will have nonzero minimum frequency; pushingciently results in two eigenfrequencies in the forbidden (or

impurity) band and therefore two localized eigenmodes. a frequency off the bottom of an upper branch would
necessarily result in an exponentially damped eigenmode,(It is possible, by making a sufficiently large change in a

single spring constant, to generate more than one localized just as pushing a frequency off the top of the acoustical
branch does.mode centered on the impurity.) As a single spring constant

is perturbed by «, then the envelope of the highest fre- The physics of randomly disordered lattices began to be
studied intensively in the 1940s and 1950s. A pioneeringquency mode switches from convex to concave (i.e., be-

comes exponentially damped) at precisely that value of « series of papers by Lifshitz [Lif43a, Lif43b, Lif44] was
published in Russia during the Second World War. Thiswhich pushes the first perturbed eigenfrequency into the

impurity band. phase of research culminated in the seminal paper by An-
derson [And58]. Anderson’s model was of lattices—The corresponding experiment, that of decreasing a sin-

gle spring constant, does not result in a localized mode regular or irregular—of electron spins (or other entities),
each of whose energy was a random variable. Then, pro-because the minimum frequency for the monoatomic chain

is zero. For a chain with more than one type of ‘‘atom’’, vided that the interparticle potential decayed sufficiently
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fast as a function of distance (faster than r23), and that the
disorder was stronger than some critical value, Anderson J 5S 0 1

21 0
D. (21)

was able to show that the electron wave function was local-
ized in space asymptotically with time. For a recent review

Also in this case, the determinant of each transfer matrixof localization theory and experiment, see Kramer and
is 1 and hence the determinant of the product PN isMacKinnon [KM93].
also 1. In general, for varying spring constants, the
matrices Bl are not symplectic, nor are the determinantsProducts of Random Matrices
equal to 1. But since the determinant of the product

The first systematic study of the randomly disordered PN is the product of the determinants of the individual
1D chain was made by Dyson [Dys52]. Dyson developed Bl , the determinant of PN equals k1/kN . In the 1D
a method for calculating the distribution of eigenfrequen- numerical experiments described below, with pseudo-
cies in the N R y limit as a continued fraction. If the random ki , we have always found there to be one positive
oscillators themselves are distributed according to an expo- and one negative LE.
nential law, Dyson’s result is analytic. This work was ex- Using the transfer matrix approach it is clear that the
tended by Schmidt [Sch57], who developed the recursive growth or decay of solutions to the equations of motion
method of computing the eigenfunctions. is governed by the exponential growth and decay rates of

The eigenvector recursion formula extends readily to the product matrix PN . Before we describe the interpreta-
arbitrarily disordered chains. In this case the equations of tion of the Lyapunov spectrum vis-à-vis localization, we
motion are need to introduce a few basic facts about products or ran-

dom matrices, Lyapunov exponents, and how we calcu-
late them.

zl11 5
kl11 1 kl 2 mlg2

kl11
zl 2

kl

kl11
zl21 , (17)

Asymptotic Properties of Products of Random Matrices

The first basic result is due to Furstenberg [Fur63], whowhich we can rewrite as
showed that if the matrices are independent and nonsingu-
lar in a certain sense, the limit

S zl

zl11
D5 1 0 1

2
kl

kl11

kl11 1 kl 2 mlg2

kl11
2 Szl21

zl
D. (18) l1 5 lim

NRy

1
N

ln iPNi (22)

exists almost surely, where here and throughout i?i denotes
Defining the matrix the Euclidean norm. Further, the maximum Lyapunov ex-

ponent l1 is a nonrandom quantity; in other words,

l1 5 lim
NRy

1
N

kln iPNil, (23)Bl 5 1 0 1

2
kl

kl11

kl11 1 kl 2 mlg2

kl11
2, (19)

where the angle brackets refer to the average under the
distribution associated with the Bl , which are assumed to

it follows by induction that be independent and identically distributed. The Lyapunov
exponent measures the growth rate associated with typical
vectors z,S zl

zl11
D5 Bl ? Bl21 ??? B1Sz0

z1
D; PlSz0

z1
D. (20)

l1 5 lim
NRy

1
N

ln iPNzi, (24)

In this way we have managed to reduce the study of
wave propagation in disordered 1D media to application although this does not preclude different growth rates for

improbable choices of z.of the theory of products of random matrices (PRM). Later
we will show how to generalize this approach to higher These results were generalized by Virster [Vir79], who

showed that if the matrices Bl were of the form Bl 5 B(jl),dimensions. We note that for constant spring constants
and varying masses the coefficient matrix is symplectic, where jl is a stationary ergodic Markov chain and B is a

matrix function on the state space of the chain, then l1i.e., J T BlJ 5 Bl for all l, where



LYAPUNOV EXPONENTS AND LOCALIZATION 33

exists and is positive almost surely. Virster’s results, which On
k51

lk 5 lim
NRy

1
N

log(udet(BN21 ??? B0)u)
(26)

are equivalent to Furstenberg’s in the special case of inde-
pendent matrices, thus apply to a rather large class of
disordered systems including, for example, exponentially 5 lim

NRy

1
N

log(udet(PN)u).
correlated Gaussian systems.

If (25) is regular and upper triangular, one has [Lya49]Calculation of the Lyapunov Spectrum

To determine the Lyapunov exponents of our linear
mapping we will employ a method based upon performing lk 5 lim

NRy

1
N ON21

j50
logu(Bj)kku, k 5 1, ..., p.

a QR decomposition at each iteration. The discrete QR
algorithm to be described below is the most widely used
technique for approximating LEs. Other methods based When the Bj are not upper triangular, we will succes-
upon performing a singular value decomposition are also sively compute QR factorizations of the transfer matrices.
possible (see Abarbanel et al. [ABK92] and Geist et al. Given orthogonal P0 : PT

0 P0 5 I, let Q0 5 P0 . Set ZN11 5
[GPL90]). We consider the rates of growth and decay for BNQN , N 5 0, 1, ..., and then decompose ZN11 5 QN11RN11 ,
the linear mapping where RN11 is upper triangular with positive diagonal

entries. Since we obtain QN11RN11 5 BNQN , then
QT

N11BNQN 5 RN11 is upper triangular. Thus, we can obtainPN11 5 BNPN , PN [ Rn3n, N 5 0, 1, ..., P0 5 I. (25)
the LEs as

Lyapunov exponents are defined only for linear systems
[Lya49, DRVV97]. For nonlinear systems the Lyapunov lk 5 lim

NRy

1
N

log((RN)kk ??? (R1)kk)

(27)
exponents with respect to a trajectory are defined using
the linearization about this trajectory. In other words, the

5 lim
NRy

1
N ON

j51
log((Rj)kk).linear system in this case is the linear variational equation

about the trajectory of the nonlinear system.

DEFINITION [Ose68]. Let PN11 5 BN ??? B0 , N 5 1, ..., Following the work in [DRVV97, DVV95] we will esti-
be a fundamental solution of (25) (with (P0)TP0 5 I). Then, mate the error in our calculation by fitting the error as
the following symmetric positive definite matrix exists, K/N 1 «. If lk(N) is the kth finite time Lyapunov exponent

at iterate N, then simple linear regression gives us the
following values for « and K,L 5 lim

NRy
(PN

TPN)1/2N,

the logarithms of the eigenvalues of which are called Lya-
punov exponents, and are denoted by l1 $ l2 $ ??? $ ln . K 5

ON
n51

lk(n)
n

2
1
N SON

n51

1
nD SONn51

lk(n)D
ON
n51

1
n2 2

1
N SON

n51

1
nD2The li’s do not depend on the initial condition matrix P0

almost surely.

The theorem of Oseledec [Ose68] leads to an equivalent
andcharacterization of LEs. Let l(1) . l(2) . ??? . l(p) be the

LEs of (25) not repeated by multiplicity, where p denotes
the number of distinct exponents. Let E(i) be the invariant

« 5
1
N SON

n51
lk(n) 2 K ON

n51

1
nD2 l*k ,subspace of Rn corresponding to the eigenvalues of L

whose logarithm is less than or equal to l(i), so that Rn 5
E(1) . E(2) . ??? . E(p). Let pk [ E(k)\E(k11), for k 5

where l*k is the exact Lyapunov exponent. Since we do1, ..., p, where E(p11) is the empty set. Then one has
not know the exact Lyapunov exponent, we use the best
available approximation, lk(N), instead of l*k .

To recap, we have described a technique for estimatingl(k) 5 lim sup
NRy

1
N

log iPNpki.
the exponential growth or decay of products of random
transfer matrices by computing the Lyapunov spectrum
of this matrix product via a discrete QR method. ErrorFor our n-dimensional problem the n Lyapunov exponents

hlkjn
k51 consist of the distinct values l(1), l(2), ..., l(p). estimates follow from linear regression of the finite time ex-

ponents.The system (25) is called regular [Lya49] if
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Definition of the Localization Length 2N2 exponents li . Then we could reasonably define the
localization length as the reciprocal of the magnitude of

The localization length is often defined in terms of the
any of the following exponents: the smallest positive

exponential decay of eigenfunctions [KM93]. But since the
(;lpos), the largest negative (;lneg), lN2

, or lN211 . Later
Lyapunov exponents control the exponential growth/decay

we will show that in our 2D lattice simulations these four
of solutions of the differential equation, it seems reason-

definitions give nearly identical results. But for now we
able to associate the localization length with the reciprocal

will define the localization length to be the reciprocal of
of one of the Lyapunov exponents (LEs). In 1D if k1 5

lN2
.

kN then the transfer matrices are unimodular and the two
LEs are of equal magnitude and opposite sign. The positive

Simulations—One Dimension
one describes exponential growth in forward time (or expo-
nential decay in reverse time), and vice versa for the nega- To do the simulations we generate pseudo-random se-

quences of spring constants and layer thicknesses. Thesetive exponent. In this case it is conventional to identify
the localization length with the reciprocal of the positive are chosen in an uncorrelated fashion from uniform distri-

butions and then correlated by applying a running averageLE [CPV93].
This identification is well supported by numerical evi- of a given length.

Each layer is described by its thickness and spring con-dence (cf. [CPV93, KM93], and the simulations below).
However, in higher dimensions the situation is not so stant and the medium is described by a sequence of thick-

nesses and the corresponding spring constants in eachstraightforward. As we will see presently, the transfer ma-
trices for lattices in higher dimensions are no longer 2 3 layer. Thus, the statistical properties of our simulated me-

dium are described in terms of maximum and minimum2, in which case the dominant rate of growth/decay of
solutions will be controlled by the smallest (in absolute values and correlation lengths for both the thicknesses of

the layers and the spring constants.value) positive/negative exponents. But we do not know
a priori how many of the LEs are nonzero for arbitrary If the layer thicknesses were all equal to 1, say, then the

maximum frequency of propagation on the lattice wouldtransfer matrices; nor can we be sure that the LEs come
in pairs (equal in magnitude but opposite sign), as would correspond to a wavelength of 1. By putting groups of

homogeneous spring constants between the ‘‘scatterers’’be the case if the product matrix PN were symplectic [Ott93,
LVV97]. Thus there would seem to be several reasonable we can simulate wavelengths smaller than the distance

between the scatterers.definitions of a localization length. Suppose that there are

FIG. 6. 1/l1 vs g/2f, where l1 is the positive Lyapunov exponent, spring correlation length 5 1, thickness correlation length 5 1, maximum
thickness 5 1, and minimum thickness 5 1.
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FIG. 7. 1/l1 vs g/2f, spring correlation length 5 2, thickness correlation length 5 1, maximum thickness 5 1, and minimum thickness 5 1.

Once the medium is determined, the task is to compute the frequency g/(2f) on the horizontal axis against the
computed localization length on the vertical axis, wherethe positive Lyapunov exponents. The Lyapunov expo-

nents are defined as limits, although our medium will have the localization length is one over the positive LE. It is
the frequency dependence of the localization length thata finite thickness. To obtain better approximations one

could average over several starting vectors or, more easily, gives insight into the transport of energy in the system, so
it is this aspect that we focus on in these figures.simply consider the medium as periodic and average over

several periods. We use the computed upper bound for the Lyapunov
exponent to compute a lower bound on the localizationIn Figs. 6–12 we illustrate some of the numerical results

we have obtained. All plots are in log–log scale and plot length; this is denoted by ‘‘LEserrorp’’ in the figures. The

FIG. 8. 1/l1 vs g/2f, spring correlation length 5 4, thickness correlation length 5 1, maximum thickness 5 1, and minimum thickness 5 1.
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FIG. 9. 1/l1 vs g/2f, spring correlation length 5 1, thickness correlation length 5 1, maximum thickness 5 10, and minimum thickness 5 5.

simulations are for media with a total thickness of 1000 values of 1/l1 greater than 1000 correspond to weak attenu-
ation. On the other hand, the minimum meaningful local-and the Lyapunov exponent was obtained by averaging

over 10 ‘‘periods.’’ In all of the simulations the spring ization length is the lattice spacing. We see that at suffi-
ciently high frequencies the waves are localized. However,constants had a maximum value of 100 and a minimum

value of 1. The correlation length for the spring constants as the medium becomes more and more smooth, the range
of frequencies that are localized goes to zero.and the thicknesses was allowed to vary, as were the maxi-

mum and minimum thickness of the layers. Figures 6–8 illustrate the lack of monotonicity that
occurs for layers of unit thickness and small correlationThe maximum localization length computable in this

way is the length of the lattice, in this case 1000. Thus, lengths for the spring constants. All figures provide

FIG. 10. 1/l1 vs g/2f, spring correlation length 5 1, thickness correlation length 5 1, maximum thickness 5 20, and minimum thickness 5 10.
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comparisons of the localization length and the spectrum Fig. 2, but amplitudes will be different due to the geometri-
cal spreading. Figure 13 shows the corresponding 1D decayof the tridiagonal matrix 2T (see Eqs. (6) and (7)). The

local minima in the localization length appear to occur with distance of the time-domain pulse computed via
acoustic finite differences. This linear–log plot is well fitwhere there are gaps in the spectrum of 2T. (Since the

frequency-domain equations of motion involve g2 we by a straight line whose slope corresponds to a localization
length of 1000. This is consistent with the theory since inare actually showing the square roots of the eigenvalues

of 2T.) 1D there is only one positive LE and so the decay must
be a pure exponential; it also agrees quantitatively withNext we show results for media composed of random

‘‘layers’’ of varying thickness. In other words, to make a the direct LE calculation. On the other hand, in the 2D
finite difference results shown in Fig. 3, there are clearlylayer of thickness n we put n springs of a given spring

constant together. In Figs. 9 and 10 for thickness between two different length scales involved. Lagendijk et al.
[LVAVDM86] argue that for strong scattering the first5 and 10, and 10 and 20, respectively, the localization length

l( f ) is basically monotone, with regions of different behav- exponential decay length is associated with the scattering
mean free path, while the second is the characteristic lengthior of l( f ) depending on whether l is large or small com-

pared to the layer thickness. associated with absorption. In the next section we will
generalize our approach to allow for 2D lattices. There weFor Figs. 11 and 12 we have thicknesses between 10 and

20. Also, the spring constant correlation lengths (thickness will see that the corresponding 2D lattice results (Fig. 16)
are indeed consistent with the time-domain finite dif-correlation lengths) are 1 and 4 (4 and 16), respectively.

As the thicknesses and/or correlation lengths increase the ference.
localization length approaches that of a uniform medium,
as expected.

Simulations—Two Dimensions
The model used for the calculations in Fig. 12, which

show a localization length greater than or equal to 1000 The extension of our approach to higher dimensional
lattices presents some challenges. The theory of the prod-for almost all frequencies, is the same as that in Fig. 1.

However, the results of the finite-difference calculation in ucts of random matrices (PRM) still applies to some extent,
although with more complicated matrices. In two dimen-Figs. 2 and 3 are for a 2D simulation, corresponding to

the propagation of a point source in a layered 2D medium. sions an approach similar to that considered above may
be employed. Consider again Eq. (7) where now T repre-For comparison with the 1D LE results we also carried

out the 1D time-domain finite-difference calculation, cor- sents the two-dimensional analog of the discrete Laplacian
operator with random spring coefficients. To cast this prob-responding to a vertically incident plane wave rather than

a point source. The results are kinematically identical to lem in terms of propagator matrices some assumptions

FIG. 11. 1/l1 vs g/2f, spring correlation length 5 1, thickness correlation length 5 4, maximum thickness 5 20, and minimum thickness 5 10.
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FIG. 12. 1/l1 vs g/2f, spring correlation length 5 4, thickness correlation length 5 4, maximum thickness 5 20, and minimum thickness 5 10.

must be made. Here, for z 5 hzi,jj(N1,N2)
(i,j)5(1,1) we impose ‘‘cork- and write the evolution as a mapping whose Lyapunov

exponents may be calculated. On the other hand, periodicscrew’’ boundary conditions in one direction. (See [Fuc90]
and [CMPVV96] for more details on this type of boundary boundary conditions may also be employed and this has

been done for the Schrödinger equation (correspondingcondition.) The corkscrew boundary conditions allow us
to linearly order the variables as to constant spring constants and random masses) in Cri-

santi et al. [CPV93]. For the case of periodic boundary
conditions, random masses, and constant spring constants,z1,1 , ..., z1,N2

, z2,1 , ..., z2,N2
, ...,

FIG. 13. Long–linear plot of the amplitude of the envelope of the down-going plane wave as a function of depth in a purely 1D medium shown
in Fig. 1 computed via time-domain finite difference. The figure can be interpreted as saying that the localization length (averaged over all frequencies)
is around 1000 for this model. This can be compared with the corresponding lattice result in Fig. 12, which shows a localization length of 1000 or
more for nearly all frequencies.
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FIG. 14. 1/lN2
vs g/2f, spring correlation length 5 2, thickness correlation length 5 1, maximum thickness 5 1, and minimum thickness 5 1.

the matrices that are obtained are symplectic, in contrast z(n11) 5 Anz(n),
with the matrices obtained below.

Let where

z(1) 5 (z1,1 , ..., z1,N2
, z2,1 , ..., z2,N2

)T,
An 5S 0 I

2an 0, ..., 0, 2bn , cn , 2dn , 0, ... 0
D.

z(2) 5 (z1,2 , ..., z1,N2
, z2,1 , ..., z2,N2

, z3,1)T,

etc.; then for n 5 i 1 ( j 2 1)N2 , 1 # i # N1 , 1 # j # N2 , The coefficients of the matrix An are given in terms of the
frequency and the spring constants aswe have

FIG. 15. 1/lN2
vs g/2f, spring correlation length 5 4, thickness correlation length 5 1, maximum thickness 5 1, and minimum thickness 5 1.
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FIG. 16. 1/lN2
vs g/2f, spring correlation length 5 4, thickness correlation length 5 4, maximum thickness 5 20, and minimum thickness 5 10.

an 5 kn/k2N2
1n

, [DVV95]). Note in Figs. 14 and 15 that it appears that
the localization lengths are converging as the width N2 is
being increased.bn 5 kN21n21/k2N21n ,

(28) That the Lyapunov exponents are nonrandom in the
cn 5 (kn 1 kN21n21 1 kN21n11 1 k2N21n 2 g2)/k2N21n , quasi-1D case follows under reasonable assumptions from

the work of Oseledec [Ose68]. However, in the quasi-1D
dn 5 kN21n11/k2N21n case there is no guarantee that the first N2 finite time

Lyapunov exponents are positive even if det(PN) $ 1.
modulo the boundary conditions. Notice that for each of As a consequence there appear to be several alternative
the matrices An the trace is zero and the determinant is definitions of the localization length. Obvious choices
6an . would be to use the absolute value of the reciprocal of

In Figs. 14, 15, and 16 we illustrate the results of numeri- one of the following LEs: the smallest positive (;lpos), the
cal experiments obtained for various values of the width largest negative (;lneg), lN2

, or lN211 . If the product matrix
N2 computed over five periods. Note that the Lyapunov PN were symplectic and if all the LEs were nonzero, then
exponents are ordered according to these four definitions would be identical. In our calcula-

tions we have defined the localization length to be
l1 $ l2 $ ??? lN2

$ ??? l2N2
. 1/lN2

. However, in Fig. 17, we show all four definitions
plotted simultaneously. The consistency of these different
estimates is a good indication of how robust the numericalThe pseudo-random models used in Figs. 14, 15, and 16
procedure is.have the same statistical properties as those in Figs. 7, 8,

and 12, respectively.
Figure 16 was computed for the model shown in Fig. 1 CONCLUSIONS

and therefore affords a direct comparison with the 1D LE
calculation in Fig. 12 and the time-domain finite-difference A variety of problems involving disordered systems can

be formulated mathematically in terms of products of ran-results in Figs. 3 (2D) and 13 (1D). In 2D, as we would
have expected from the finite-difference results, we see dom transfer matrices. In such cases, the growth or decay

of solutions is governed by the Lyapunov spectrum oflocalization lengths less than 1000 for nearly all frequen-
cies. In addition we see clear evidence of nonmonotonicity the matrix product. We have presented an algorithm for

computing the finite time Lyapunov exponents (along withof the frequency dependence of the localization length.
To decrease the computation time we compute only the error estimates) for such problems and applied the algo-

rithm to the study of layered lattices in 1D and 2D. Onfirst N2 exponents and not all 2N2 exponents (see
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FIG. 17. The localization length as a function of frequency computed using four different definitions described in the text corresponding to the
n 5 8 case of Fig. 16. The consistency of these different estimates is an indication of the numerical robustness of the procedure.
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